

Real-time Embedded Seismic Monitoring System

Benjamin Roytburd

Department of Electrical and Computer Engineering

University of Michigan - Dearborn

Dearborn, Michigan

roytburd@umich.edu

Joel Valleroy

Department of Electrical and Computer Engineering

University of Michigan - Dearborn

Dearborn, Michigan

joelvalleroy@gmail.com

Abstract—We introduce a Real-time Embedded Seismic

Monitoring System. Monitoring the presence of seismic activity

and being able to alert the audience to it is an important safety

feature used in many buildings, workplaces, industrial facilities,

power plants, etc. Our System focuses on real-time requirements,

ensuring the success of our goals. We also include an IoT feature

to demonstrate HMI capability in showing the audience some data

about the recent seismic event. Our system is also extremely

affordable compared to state-of-the-art systems, while retaining

most of the optional functionality.

Keywords—Embedded, Real-Time, Seismic Monitoring

I. INTRODUCTION

Seismic monitoring systems are an important part of an early
response capability for various work sites. It is important to
safety for certain sites to be able to immediately know that a
seismic event is happening and the details of that event. Certain
machines and systems may be required to shut down if an event
is detected, and depending on the event details, various
maintenance or inspections may be required after.

We elected to design and build a Real-time Embedded
Seismic Monitoring System. In this paper, we will discuss the
details from our requirements phase to the end of our product’s
life cycle. Our focus is a prototype ensuring real-time
functionality, affordability, and repeatability of the design so
that future teams can modify it for their needs.

II. CONCEPT

Our project involves utilizing real-time functions on a
microcontroller coupled with an accelerometer, an ethernet
interface, audible outputs, and interrupt options. We will build
this with affordability, in contrast to other market solutions.

Seismic monitoring systems are widely used in many
industries, including nuclear power plants. If a major event is
detected, a reactor may automatically shut itself, or operators
may choose to shut the plant down for inspection even after a
non-major event. A seismic monitoring system is legally
required at many such places. Seismic monitoring systems are
used in other industries too, for similar reasons - equipment and
structures must be inspected if a big enough earthquake is
detected [1]. Therefore, this product would be intended for
various customers such as: utilities, factories, seismologists,
military, building engineers, and more.

Many such systems are already sold, often at exorbitant
prices. These high prices are often due to nuclear quality
certifications, etc. A typical solution can cost up to $30,000.
These solutions often consist of the same type of design we are
proposing, that is: a controller / computer, attachable sensors
(accelerometers), a monitor/printer to display with.

We used the waterfall model for the life of our project, which
means each distinct phase will be fully completed before we
move on to the next. This will require a strict plan, and good
time keeping ensuring we will be on target for the launch (live
demonstration to a conference of peers). We have determined 7
distinct phases for our management timeline with the help of our
textbook [2], as shown in Fig. 1.

Figure 1: Software Design Life Cycle Management Process

Our project is designed to be affordable. A simple Seismic
Monitoring system can be accomplished with: A
microcontroller (~$20), An accelerometer ($~$10), Audio
($~1), or Video ($~20) through ethernet ($~30). This shows that
creating such a device is feasible for any engineering team.

III. REQUIREMENTS

A. Functional Requirements:

The seismic monitor must detect and report a seismic activity
in the form of accelerometer data, it must display the data in the
form of a web page requested by clients and store the web page
data inside its operating system. The seismic activity will
constantly polled for the maximum and be able to be reset with
an external interrupt, the monitor will also be able to be paused
and played with external interrupts. Otherwise the monitor will
report out numeric data live onto the web page. When an
earthquake occurs, an external buzzer will sound to alert the
user.

The seismic monitor will use an accelerometer to determine
if an earthquake has occurred, and then report out the maximum
acceleration data of 2 axes (x and y) in the form of meters per
seconds squared onto a web page in the form of decimal
numbers. The accelerometer data will be read and analyzed
every 50 milliseconds. It will also be updated on a web page
every 1000 milliseconds. The data should also be accurate
within 10 milliseconds.

The real time operating system will also store and display the
time since the last alarm, the time the current program has been
running for, and the time the alarm went off on the web page.

B. Non-functional Requirements

The seismic monitor must run on a real time operating
system (RTOS) which supports interrupts, in order to support
monitoring external events such as earthquakes. The language
the RTOS is built on must be high level and easy to modify /
interface with, with libraries for external hardware interfacing.
The code must be written without GO TO statements, minimal
global variables, and minimal recursion in order to avoid long
delays and lengthy code.

 The RTOS must be contained on a microcontroller that has
enough digital and analog I/O to support external interrupts, a
networking interface, a buzzer, buttons, and an accelerometer.
The microcontroller must also have a pin for voltage and ground
for external modules. We will also require an affordable design.

IV. DESIGN

A. Hardware

The seismic monitor will use an Arduino UNO board based
on the ATmega328P chipset. The ATmega328 has a modified
Harvard architecture and a 8-bit RISC processor. This chip also
has 32K bytes of flash memory, which should be ample space
for the code for this task. The chip can communicate using serial
Universal Synchronous/Asynchronous Receiver/Transmitter
(USART) protocol, master/slave SPI serial interface, and an I2C
interface. The board itself has 14 digital I/O pins, 6 analog input
pins.

 The external hardware will be a buzzer, an Arduino ethernet
shield, three buttons, and an MMA8451 accelerometer. The
accelerometer must output its data on at least 2-axes.

The hardware layout begins with overlaying the ethernet
shield on the Arduino. The wiring shall consist of three buttons,
all tied to ground with a 10 kilo-Ohm resistor each. The pause

interrupt button will be tied to digital pin two, a dedicated
interrupt pin on the Arduino board, and the play interrupt will be
tied to digital pin five. The clear interrupt button will be tired to
digital pin three, the second dedicated interrupt pin on the
Arduino board. The buzzer will be tied to ground and digital pin
seven. The accelerometer’s SDA pin will be tied to analog pin
four, and its SCL pin will be tied to the analog five pin. This is
done because the accelerometer used I2C to communicate. The
ground pin from the Arduino board shall be shared with the
buttons, buzzer, accelerometer, and ethernet shield. The 5V
power pin from the Arduino board shall be shared with the
accelerometer and the ethernet shield. Reference Fig. 2 for
wiring layout.

Figure 2: Hardware/Wiring Diagram

B. Software

The software used will be C++ and use algorithms to
interpret the data from the accelerometer. The software must
also store the accelerometer data as a variable that can then be
displayed with HTML code also stored in the software.

 The tasks shall run as a polled loop with interrupts, the
code loops constantly polling the accelerometer data and if a
client is available. Storing the peak acceleration will be a
background task, and when an earthquake is detected, a flag is
set, then the alarm will be annunciated for 500 milliseconds, the
time since the program started will be stored, and the flag will
be cleared. There will be two interrupts, one will be a pause
button which will stop running the code until the interrupt is
ended by another play button. The second interrupt will be the
clear button, which will simply set the peak acceleration back to
0. In the polled loop, checking if the client is available is
constantly polled, when a client requests the server, it becomes
available to the server, then the server tells the client to
reconnect every 1000 milliseconds, store the time since program
start, and display the following on an HTML webpage: peak
acceleration, time program has been running, time the alarm
went off, and time since the last alarm (Figure 3. State Chart).

_

Figure 3: State Chart

 The interrupts are given priority to the accelerometer check,
but the web server code cannot be interrupted, it is given the
highest priority. If an interrupt occurs during the web server
code, it is queued and served after the web server code
completes. In Fig. 4., Timing Example, an example is shown of
the interrupt service routine of the real time operating system,
first the accelerometer is checked, then the web server code runs,
then the accelerometer check is ran again, only this time it is
interrupted by the clear interrupt. Then after the interrupt
finishes the web server code begins, there is an attempted clear
interrupt, but since no interrupts are allowed during this time,
the interrupt is serviced after the web server code completes.

Figure 4: Timing Example

The web server is designed to work with both a local ethernet
connection, as well as over Wi-Fi connected to a router. The web
server must be given an IP address depending on the network
and the computer that is being used. While connected, the client
uses a web browser to navigate to the address of the web server.
Then the client requests to connect to the web page itself, and
then the server will check if the client is available while it is
connected, and if so, it will transmit the web page data which
will be displayed to the client in HTML. The client then
refreshes its connection by disconnecting from the web server,

waiting once second, then requesting to connect again (Figure 5.
Networking).

Figure 5: Networking

V. IMPLEMENTATION

Programming took place with the Arduino IDE, using its

version of C++ for its microcontroller applications. To use the

aforementioned hardware, the corresponding software libraries

were loaded. For the accelerometer, the libraries

“Adafruit_MMA8451.h”, “Adafruit_Sensor.h”, and “Wire.h”

were used, and for the ethernet shield the libraries

“Ethernet2.h” and “SPI.h” were used (Appendix A. Lines 6-

10). The microcontroller used has a built in RTOS, which

always runs the function “void setup()” first, then loops the

function “void loop()” infinitely, unless otherwise specified by

the user (Appendix A. Lines 21 and 39). Within “void setup()”,

interrupts are attached to pin two and three, the web server is

initialized, and the accelerometer is initialized (Appendix A.

Lines 21-36). Within the “void loop()” function, the

“eqCheck()” function is called repeatedly, this function

processes the data from the accelerometer and checks if an

earthquake has occurred (Appendix A. Lines 151-197). Within

“void loop()”, there is also constant polling for a client, and if

one is available, HTML data is sent to the client telling them to

display a web page, and reconnect every second (Appendix A.

65-136). This code does not allow interrupts, since if it is

interrupted it will cause the client to disconnect, and the user

will have to manually reconnect the client, as opposed to doing

it automatically. The interrupts are their own functions, which

can be called at any time (besides during the web server code).

The interrupts are “void Clear_ISR1()” and “void

Pause_ISR2()”, the first interrupt resets the peak acceleration,

and the second interrupt will pause the entire system until a

separate play button is pressed (Appendix A. Lines 138-140 and

Lines 142-149).

This code was built and tested on an assembled prototype

which followed the wiring diagram (Figure 6. Physical

Prototype). This code was debugged using a local PC

connection, and a wireless router connection to verify the web

server functionality.

Figure 6: Physical Prototype

VI. VALIDATION

For testing the functionality, we used system
blackbox/functional testing. We verified compliance with the
following requirements:

• Accelerometer is being reported correctly to the
microcontroller

• Buzzer activation when magnitude threshold is passed

• Web Server HMI data matches the
accelerometer/system data

• Timing meets functional requirements

We utilized standard timing functions in the Arduino
standard library to allow us to time our functions. We then ran
our system while logging timing data.

We found that the system takes ~5 ms to initialize and then
a typical run will look like Table 1.

Table 1: Functional Timing Example

As the table shows, our system is capable of staying well
within its required timing limits (50 milliseconds). It’s still
necessary for us to keep leeway in our requirements as our
HTTP server functionality can take around 30 milliseconds.

While the ‘clear’ interrupt is quick (~2 milliseconds), the
‘pause’ interrupt should only be used in testing as it causes the
real-time requirements to fail.

VII. MAINTENANCE

If we were to continue to develop this project after
submission of this paper, we would switch to a different
computing platform. While Arduino Uno worked great for
prototyping, its memory limitations did make it difficult to
accomplish more useful features on the web server. It would be
wise for a future iteration of the system to be ported to a more
powerful platform.

VIII. STATE OF THE ART

State of the art seismic monitoring systems follow the same
ideas we did: a computer, an accelerometer, and audio/visual
interface. Some of them made for production are more robust,
allowing multiple accelerometers, or redundant management
computers (in our case, the Arduino). Some systems are also
programmable on the user side, allowing the user to decide what
magnitude of event they wish to consider for alarm. Many
systems may use more advanced methods for earthquake
recognition than just measuring acceleration magnitude, to
allow them to make sure it’s an earthquake rather than an
equipment anomaly.

The visual interface for these state-of-the-art systems often
include trending, and various functionality to allow the user to
study the event that just happened.

A usual state of the art system purchase for an industrial
application would cost at least several tens of thousands
(dollars). Our system does not compete well with these
competitor systems in robustness or functionality, but it does
win on simplicity and cost ($~50).

Figure 7: REFTEK RTI Software Suite [5]

IX. CONCLUSION

In conclusion, we have presented the design of our

prototype Real-Time Seismic Monitoring System. The focus on

real-time requirements for important functions ensures the

device focuses on what is important, safety. It is vital that we

separate these required functions from the frills of the system.

We look forward to future uses and improvements of this

technology.

APPENDIX

Appendix A. Source Code

ACKNOWLEDGMENT

We would like to thank Professor Adnan Shaout (University
of Michigan – Dearborn, Department of Electrical and
Computer Engineering) for his advice and guidance throughout
this project. We would also like to thank the Arduino community
for technical guidance on interfacing our system.

REFERENCES

[1] Skolnik, Ciudad-Real, Graf, Sinclair, Swanson, and Goings, “Recent
Experience from Buildings Equipped with Seismic Monitoring Systems for
Enhanced Post-Earthquake Inspection.” [Online]. Available:
https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_5314.pdf.

[2] Laplante, P. and Ovaska, S. (2012). Real-time systems design and analysis.
4th ed.

[3] Learn.adafruit.com. (2019). Arduino Code | Adafruit MMA8451
Accelerometer Breakout | Adafruit Learning System. [online] Available at:
https://learn.adafruit.com/adafruit-mma8451-accelerometer-
breakout/wiring-and-test [Accessed 21 Apr. 2019].

[4] Arduino.cc. (2019). Arduino - WebServer. [online] Available at:
https://www.arduino.cc/en/Tutorial/WebServer [Accessed 21 Apr. 2019].

[5] “RTI Software Suite for Seismic Monitoring,” Ref Tek. [Online]. Available:
https://www.reftek.com/category/products/software/rti-software-suite/.
[Accessed: 22-Apr-2019].

https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_5314.pdf

Appendix A.

 1. // external third party libraries
 2. // We also use vendor code for interfacing with hardware such as :
 3. // https://www.arduino.cc/en/Tutorial/WebServer (Ethernet Hardware)
 4. //https://learn.adafruit.com/adafruit-mma8451-accelerometer-

breakout/wiring-and-test (Accelerometer)
 5.
 6. #include <SPI.h> //Arduino Standard Library
 7. #include <Ethernet2.h> //provided by Ethernet Shield Vendor
 8. #include <Wire.h> //Arduino Standard Library
 9. #include <Adafruit_MMA8451.h> //provided by Accelerometer Vendor
 10. #include <Adafruit_Sensor.h> //provided by Accelerometer Vendor
 11.
 12. Adafruit_MMA8451 mma = Adafruit_MMA8451(); //accelerometer object
 13.
 14. byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
 15. IPAddress ip(192, 168, 137, 177); // varies depending on your network
 16. EthernetServer server(80);
 17.
 18. double peakAcc = 0; // variable used to store peak Acceleration
 19. int eqDataIndex = 0; // tracking index for data array of seismic data
 20.
 21. void setup() {
 22. //"pause" button is attached to pin 2
 23. attachInterrupt(digitalPinToInterrupt(2), Pause_ISR2, HIGH);
 24. //"clear" button is attached to pin 3
 25. attachInterrupt(digitalPinToInterrupt(3), Clear_ISR1, HIGH);
 26.
 27. // Ethernet Shield Pin
 28. Ethernet.init(10);
 29.
 30. mma.begin(); //accelerometer object
 31. mma.setRange(MMA8451_RANGE_2_G); // sets range to 2 g
 32.
 33. Ethernet.begin(mac, ip);
 34.
 35. server.begin();
 36. }
 37.
 38. // Arduino loop() is a infinite FOR inside an implied C++ main() func.
 39. void loop() {
 40.
 41. //time since last alarm
 42. unsigned long alarmTime;
 43. unsigned long currentTime;
 44. unsigned long time_since_last_alarm;
 45.
 46. int arraySize = 100; //size of ring buffers for holding seismic data
 47. double eqDataX [arraySize]; //array for holding seismic data on X
 48. double eqDataY [arraySize]; //array for holding seismic data on Y
 49.
 50. bool eqFlag = false; //boolean flag, set to true if EQ detected

 51.
 52. // function to check if accelerometer data surpasses a setpoint
 53. eqCheck(eqDataX, eqDataY, eqDataIndex, eqFlag);
 54.
 55. if (eqFlag){
 56. tone(7, 500, 500); //beep at 500 Hz. for 500 ms (on pin 7)
 57. eqFlag = false; //reset flag
 58. }
 59.
 60.
 61. if (eqDataIndex > (arraySize - 1)){ //reset the index for eqData
 62. eqDataIndex = 0;
 63. }
 64.
 65. //WebServer Begin
 66. noInterrupts(); //volatile code
 67. // listen for incoming clients
 68. EthernetClient client = server.available();
 69.
 70. if (client) {
 71.
 72. // an http request ends with a blank line
 73. bool currentLineIsBlank = true;
 74. while (client.connected()) {
 75. if (client.available()) {
 76. char c = client.read();
 77.
 78. if (c == '\n' && currentLineIsBlank) {
 79.
 80. //https://www.arduino.cc/en/Tutorial/WebServer
 81. client.println("HTTP/1.1 200 OK");
 82. client.println("Content-Type: text/html");
 83. client.println("Connection: close"); //close after complete
 84. client.println("Refresh: 1"); // refresh the page
 85. client.println();
 86. client.println("<!DOCTYPE HTML>");
 87. client.println("<html>");
 88.
 89. //display data
 90. client.print("<center>");
 91. client.print("Peak acceleration of X and Y is: ");
 92. client.print(peakAcc);
 93. client.print("</center>");
 94. client.println("
");
 95.
 96. currentTime = millis(); //calculate time since last alarm
 97. time_since_last_alarm = currentTime - alarmTime;
 98. client.print("<center>");
 99. client.print("The program has been running ");
100. client.print(currentTime);
101. client.print(" milliseconds");
102. client.print("</center>");
103. client.println("
");

104.
105. client.print("<center>");
106. client.print("The alarm went off at ");
107. client.print(alarmTime);
108. client.print(" milliseconds");
109. client.print("</center>");
110. client.println("
");
111.
112. client.print("<center>");
113. client.print("It has been ");
114. client.print(time_since_last_alarm);
115. client.print(" milliseconds since the last alarm");
116. client.print("</center>");
117. client.println("
");
118.
119. client.println("</html>"); //end of processing / html
120. break; //out of while loop
121. }
122.
123. if (c == '\n') { // you're starting a new line
124. currentLineIsBlank = true;
125. }
126. else if (c != '\r') { // character on current line
127. currentLineIsBlank = false;
128. }
129. }
130. }
131. delay(1);
132. client.stop(); // close connection
133. }
134. //non volatile code
135. interrupts();
136. }
137.
138. void Clear_ISR1(){
139. peakAcc = 0; //resets peak acceleration
140. }
141.
142. void Pause_ISR2() {
143. //pin 5 is the unpause button
144. while (digitalRead(5) == LOW) {
145. if (digitalRead(5) == HIGH){
146. //play
147. }
148. }
149. }
150.
151. void eqCheck(double eqDataX[], double eqDataY[], int &eqDataIndex, bool

&eqFlag){
152. //this function will query accelerometer and put data into memory
153. sensors_event_t event;
154. mma.getEvent(&event);
155.

156. eqDataX[eqDataIndex] = event.acceleration.x; // acc. data into memory
157. eqDataY[eqDataIndex] = event.acceleration.y;
158.
159. eqDataIndex++; // increment index for rotating buffer
160.
161. double peakY = 0;
162. double peakX = 0;
163.
164. if (eqDataX[eqDataIndex] > 0) // Don’t care about negative acceleration
165. peakX = eqDataX[eqDataIndex];
166. else if (eqDataX[eqDataIndex] < 0)
167. peakX = eqDataX[eqDataIndex] * -1.00;
168.
169. if (eqDataY[eqDataIndex] > 0)
170. peakY = eqDataY[eqDataIndex];
171. else if (eqDataY[eqDataIndex] < 0)
172. peakY = eqDataY[eqDataIndex] * -1.00;
173.
174. if (peakX < 1000.00 and peakY < 1000.00){ // ignores accelerometer fault
175. if (peakX > peakAcc)
176. {
177. peakAcc = peakX;
178. }
179. if (peakY > peakAcc)
180. {
181. peakAcc = peakY;
182. }
183.
184. peakAcc = peakAcc * 100.0; // this section truncates out some decimals
185. int temp = (int) peakAcc;
186. peakAcc = (double) temp / 100.0;
187.
188. if (peakX > 1.00) //earthquake detected, Boolean flag
189. eqFlag = true;
190. else if (peakY > 1.00) //earthquake detected!
191. eqFlag = true;
192. }
193. else {
194. peakX = 0;
195. peakY = 0;
196. }
197. }

